🔢 NTA UGC NET, 25 June 2025, Second Shift, Reasoning
Question 01
Solution of A
✅ So, A → III (3)🧠 Question 02:
Given:
"WHERE" → 5, 18, 5, 8, 23
"DELHI" → 9, 8, 12, 5, 4
"WHERE" reversed = "EREHW" → E(5), R(18), E(5), H(8), W(23) ✅
"DELHI" reversed = "IHLED" → I(9), H(8), L(12), E(5), D(4) ✅
So the pattern is:
➤ Reverse the word → Write position of each letter in the alphabet
Reversed "HORSE" → "ESROH"
Letter | Position in Alphabet |
---|---|
E | 5 |
S | 19 |
R | 18 |
O | 15 |
H | 8 |
🔢 Question 03: Number Series
Given Series: 3, 8, 15, 24, 35, 48, ?
- 8 − 3 = 5
- 15 − 8 = 7
- 24 − 15 = 9
- 35 − 24 = 11
- 48 − 35 = 13
Pattern of differences: 5, 7, 9, 11, 13 → Consecutive odd numbers
Next difference = 15
Next number = 48 + 15 = 63
🔢 Question 04: Compound Interest
🔢 Question 05: Match the LIST-I with LIST-II
सूचि-I को सूचि-II से मिलाएं
LIST-I (प्रश्न)
LIST-II (उत्तर)
A. If, x + 1/x = 2, then (x - 1/x) = ?
I. 11
B. If, x − y = 1 and x² + y² = 41, then x + y = ?
II. 2
C. If (1 − 1/x) = 2, then 1 + 1/x² = ?
III. 0
D. If (x − 1/x) = 3, then x² + 1/x² = ?
IV. ±9
✅ Solution (हल):
A. Given: x + 1/x = 2
Use identity: (x + 1/x)² = x² + 1/x² + 2 ⇒ 4 = x² + 1/x² + 2 ⇒ x² + 1/x² = 2
Now, (x - 1/x)² = x² + 1/x² - 2 = 2 - 2 = 0 ⇒ x - 1/x = 0
✅ So, A → III (0)
B. Given: x - y = 1 and x² + y² = 41
Use identity: (x − y)² = x² + y² − 2xy ⇒ 1 = 41 − 2xy ⇒ 2xy = 40 ⇒ xy = 20
Now, (x + y)² = x² + y² + 2xy = 41 + 40 = 81 ⇒ x + y = ±9
✅ So, B → IV (±9)
C. Given: 1 − 1/x = 2 ⇒ 1/x = −1
Then: 1 + 1/x² = 1 + (−1)² = 1 + 1 = 2
✅ So, C → II (2)
D. Given: x − 1/x = 3
Use identity: (x − 1/x)² = x² + 1/x² − 2 ⇒ 9 = x² + 1/x² − 2 ⇒ x² + 1/x² = 11
✅ So, D → I (11)
✅ Final Matching (अंतिम मिलान):
प्रश्न
उत्तर
A
III (0)
B
IV (±9)
C
II (2)
D
I (11)
✔ Correct Option: Option 4️⃣ (A-III, B-IV, C-II, D-I)
सूचि-I को सूचि-II से मिलाएं
LIST-I (प्रश्न) | LIST-II (उत्तर) |
---|---|
A. If, x + 1/x = 2, then (x - 1/x) = ? | I. 11 |
B. If, x − y = 1 and x² + y² = 41, then x + y = ? | II. 2 |
C. If (1 − 1/x) = 2, then 1 + 1/x² = ? | III. 0 |
D. If (x − 1/x) = 3, then x² + 1/x² = ? | IV. ±9 |
✅ Solution (हल):
A. Given: x + 1/x = 2
Use identity: (x + 1/x)² = x² + 1/x² + 2 ⇒ 4 = x² + 1/x² + 2 ⇒ x² + 1/x² = 2
Now, (x - 1/x)² = x² + 1/x² - 2 = 2 - 2 = 0 ⇒ x - 1/x = 0
✅ So, A → III (0)
B. Given: x - y = 1 and x² + y² = 41
Use identity: (x − y)² = x² + y² − 2xy ⇒ 1 = 41 − 2xy ⇒ 2xy = 40 ⇒ xy = 20
Now, (x + y)² = x² + y² + 2xy = 41 + 40 = 81 ⇒ x + y = ±9
✅ So, B → IV (±9)
C. Given: 1 − 1/x = 2 ⇒ 1/x = −1
Then: 1 + 1/x² = 1 + (−1)² = 1 + 1 = 2
✅ So, C → II (2)
D. Given: x − 1/x = 3
Use identity: (x − 1/x)² = x² + 1/x² − 2 ⇒ 9 = x² + 1/x² − 2 ⇒ x² + 1/x² = 11
✅ So, D → I (11)
✅ Final Matching (अंतिम मिलान):
प्रश्न | उत्तर |
---|---|
A | III (0) |
B | IV (±9) |
C | II (2) |
D | I (11) |
✔ Correct Option: Option 4️⃣ (A-III, B-IV, C-II, D-I)
0 Comments